

EINSTEIN TOWER COELOSTAT

THE VERY FIRST INSTRUMENT of a solar telescope is the device used to collect the sunlight and direct it to the optical laboratory inside the building. Coelostats provide a simple solution to that problem. They consist of two flat mirrors. One of them moves during the day following the Sun and reflects the light towards a second fixed mirror that sends the light beam to the interior of the building. The image shows the coelostat of the Einstein Tower in Potsdam (Germany), protected by a wooden dome.

		JANUARY						
	MON	TUE	WED	THU	FRI	SAT	SUN	
Jan 10-14 18 th Conference on	28	29	30	31	01	02	03	
Space Weather, AMS101, online	04	05	06	07	08	09	10	
Jan 25–29 SOLARNET School: A holistic view of the	11	12	13	14	15	16	17	
solar atmosphere - Combining space and ground-based	18	19	20	21	22	23	24	
observations Jan 28–Feb 4 43rd COSPAR Scientific	25	26	27	28	29	30	31	
Assembly, Sydney, Australia	01	02	03	04	05	06	07	

GREGOR PRIMARY MIRROR

SUNLIGHT CAN ALSO BE COLLECTED USING A REFLECTOR TELESCOPE DESIGN, with a primary and a secondary mirror plus other auxiliary mirrors to feed the instruments in the optical laboratory. The primary mirror of a solar telescope is concave and needs to be polished to a high degree of precision to deliver excellent image quality. Its size sets the spatial resolution and the sensitivity of the telescope. The image shows the primary mirror of the GREGOR telescope, with a diameter of 1.5 metres, in its supporting structure.

		FEBRUARY							
	MON	TUE	WED	THU	FRI	SAT	SUN		
Feb 1-5	01	02	03	04	05	06	07		
of Space Science on Dynamical Systems and Machine Learning	08	09	10	11	12	13	14		
Approaches to Sun- Earth Relations, online	15	16	17	18	19	20	21		
Feb 3 EAST General Assembly, online	22	23	24	25	26	27	28		
Feb 20-24	01	02	03	04	05	06	07		
sensing check-out window 2 (0.51 AU)	08	09	10	11	12	13	14		

GREGOR ADAPTIVE OPTICS

TURBULENCE IN THE EARTH'S ATMOSPHERE degrades the images taken by solar telescopes, making them blurry. This degradation is minimized with the help of adaptive optics systems. They consist of very fast wavefront sensors and deformable mirrors that correct the distortions of the incoming light in real time, restoring the quality of the images. EST will have a sophisticated Multi-Conjugated Adaptive Optics System with 5 deformable mirrors. The image shows the adaptive optics system of the GREGOR telescope in Tenerife (Spain).

	MARCH								
	MON	TUE	WED	THU	FRI	SAT	SUN		
Mar 2-4 Cool Stars 20.5, virtual	01	02	03	04	05	06	07		
meeting	08	09	10	11	12	13	14		
Peak of Normids meteor shower	15	16	17	18	19	20	21		
Mar 20 Spring equinox (09:37 GMT)	22	23	24	25	26	27	28		
Mar 21-23	29	30	31	01	02	03	04		
sensing check-out window 3 (0.68 AU)	05	06	07	08	09	10	11		

ZÜRICH IMAGING POLARIMETER

TO MEASURE THE POLARIZATION OF THE LIGHT with high sensitivity, solar telescopes are equipped with instruments called spectropolarimeters. They consist of a polarimeter, a spectrograph with a slit and a diffraction grating, and one or more cameras. The image shows the Zürich Imaging Polarimeter mounted near the focal plane of the Gregory Coudé Telescope in Locarno (Switzerland). This instrument is used to measure very weak polarization signals coming from the solar photosphere and chromosphere. It is the most sensitive of its class in operation.

657	APRIL							
	MON	TUE	WED	THU	FRI	SAT	SUN	
Apr 6-9 Solar Orbiter School	29	30	31	01	02	03	04	
Les Houches, France	05	06	07	08	09	10	11	
Mars is 0.1 degrees North of the Moon	12	13	14	15	16	17	18	
Apr 22 Peak of Lyrids meteor shower (13:00 GMT)	19	20	21	22	23	24	25	
Apr 23	26	27	28	29	30	01	02	
meteor shower (12:00 GMT)	03	04	05	06	07	08	09	

VTT SPECTROGRAPH SLIT

THE FIRST ELEMENT OF A GRATING SPECTROGRAPH IS THE SLIT. It is placed at the focal plane of the telescope and consists of a very thin, long hole that selects part of the solar image and lets the light go through. The spectrograph then disperses the light, producing the spectrum for each spatial position along the slit. The slit is etched on a coated metal plate. Usually, a camera takes images of that plate to provide context information. The picture shows the spectrograph slit assembly of the German Vacuum Tower Telescope in Tenerife (Spain).

CCT		MAY								
	MON	TUE	WED	THU	FRI	SAT	SUN			
May 6 Peak of Eta Aquariids	26	27	28	29	30	01	02			
meteor shower (03:00 GMT)	03	04	05	06	07	08	09			
May 8 Peak of Eta Lyrids	10	11	12	13	14	15	16			
meteor shower	17	18	19	20	21	22	23			
May 24-27 Hinode-14/IRIS-11 Joint Science Meeting,	24	25	26	27	28	29	30			
washington, USA	31	01	02	03	04	05	06			

EINSTEIN TOWER SPECTROGRAPH

AFTER CROSSING THE SLIT, the light is directed to the spectrograph grating. First, it has to be collimated and then focused on the camera. To ensure high wavelength dispersion, the light must travel a long distance, therefore spectrographs are large instruments. They can be mounted horizontally or vertically. The image shows the horizontal spectrograph of the Einstein Tower in Potsdam (Germany). The slit and the spectrograph cameras are on one end of the optical bench and the grating on the other end.

CET	JUNE									
	MON	TUE	WED	THU	FRI	SAT	SUN			
Jun 10 Annular solar eclipse	31	01	02	03	04	05	06			
Jun 15-22 NASA Heliophysics	07	08	09	10	11	12	13			
Summer School, Boulder, USA	14	15	16	17	18	19	20			
Jun 21 Summer solstice (03:32 GMT)	21	22	23	24	25	26	27			
Jun 28-Jul 2 2021 SDO Science	28	29	30	01	02	03	04			
Workshop: A Decade of Discovery, Vancouver, Canada	05	06	07	08	09	10	11			

MSDP IMAGING SPECTROGRAPH

SOME SOLAR SPECTROGRAPHS such as the Multichannel Subtractive Double-Pass (MSDP) instrument provide highly monochromatic images across a spectral line. The images sample a long but narrow region of the solar surface to avoid overlap of different wavelengths. This region is selected using a window instead of a slit. The picture shows the entrance window of the MSDP spectrograph near the Coudé focus of the 53-cm Large Coronograph of the Astronomical Observatory of the University of Wrocklaw (Białkow, Poland).

CCT		JULY								
	MON	TUE	WED	THU	FRI	SAT	SUN			
Jun 28-Jul 2 2021 SDO Science	28	29	30	01	02	03	04			
Workshop: A Decade of Discovery, Vancouver, Canada	05	06	07	08	09	10	11			
July 30	12	13	14	15	16	17	18			
Peak of Delta Aquariids meteor shower	19	20	21	22	23	24	25			
July 30 Peak of Capricornids	26	27	28	29	30	31	01			
Meteor Shower	02	03	04	05	06	07	08			

GREGOR INFRARED SPECTROGRAPH

SPECTROGRAPHS PRODUCE NARROW IMAGES, but when combined with Integral Field Units (IFUs) they can deliver 2D polarization measurements over large fields of view. EST will be equipped with IFUs based on image slicers and microlens arrays. Image slicers "cut" the solar image into long and narrow stripes that are reordered and directed to the slit of a classical spectrograph. The picture shows the image slicer of the GRIS spectropolarimeter installed on the GREGOR telescope (Tenerife, Spain).

		AUGUST								
	MON	TUE	WED	THU	FRI	SAT	SUN			
Aug 9-13 IAUS 365: Dynamics	26	27	28	29	30	31	01			
of Solar and Stellar Convection Zones and Atmospheres, Moscow,	02	03	04	05	06	07	08			
Russia	09	10	11	12	13	14	15			
Peak of Perseids meteor shower (19-22 GMT)	16	17	18	19	20	21	22			
Aug 16-27 XXXI General Assembly	23	24	25	26	27	28	29			
Astronomical Union, Busan, Republic of Korea	30	31	01	02	03	04	05			

TRIPLE-ETALON SOLAR SPECTROMETER

NARROW-BAND TUNABLE FILTERS provide highly monochromatic images of the solar surface. Spectral lines can be scanned by tuning the wavelength transmitted by the filter sequentially. These instruments are usually based on Fabry-Pérot interferometers and can have polarimetric capabilities. They allow us to study large-scale physical processes occurring on the Sun. The image shows the Triple-Etalon Solar Spectrometer (TESOS), a narrow-band tunable filter operating at the German Vacuum Tower Telescope on Tenerife (Spain).

CCT		SEPTEMBER									
	MON	TUE	WED	THU	FRI	SAT	SUN				
Sep 5-10 16 th European Solar	30	31	01	02	03	04	05				
Physics Meeting, Turin	06	07	08	09	10	11	12				
Sep 19 Radial alignment of Solar Orbiter, Parker Solar Probe and Stereo-A	13	14	15	16	17	18	19				
Sep 22	20	21	22	23	24	25	26				
Autumn equinox (19:21 GMT)	27	28	29	30	01	02	03				
Sep 28–Oct 1 Big Science Business Forum, Granada, Spain	04	05	06	07	08	09	10				

CHROMOSPHERIC IMAGING SPECTROMETER

NARROW-BAND TUNABLE FILTERS are used to scan spectral lines formed in the solar photosphere and the solar chromosphere. To achieve excellent spatial resolution, they need to beat the degradation produced by turbulence in the Earth's atmosphere by taking images at very high rates (up to 80 frames per second). The picture shows the CHROMIS instrument at the optical laboratory of the Swedish 1-m Solar Telescope on La Palma (Spain). The Crisp Imaging Spectro-Polarimeter (CRISP) can be seen in the background, to the right.

CCT		OCTOBER									
	MON	TUE	WED	THU	FRI	SAT	SUN				
Oct 8 Peak of Draconids	27	28	29	30	01	02	03				
meteor shower (18:30 GMT)	04	05	06	07	08	09	10				
Oct 10 Peak of Southern	11	12	13	14	15	16	17				
Taurids meteor shower	18	19	20	21	22	23	24				
Oct 25-29	25	26	27	28	29	30	31				
Weather Week, Glasgow, UK	01	02	03	04	05	06	07				

CORONAL MULTICHANNEL POLARIMETER

MEASURING POLARIZATION SIGNALS IN THE SOLAR CORONA is extremely challenging, due to the weakness of coronal spectral lines. They are millions of times fainter than the solar photosphere, and thus very difficult to observe. To overcome this problem, the solar disk must be blocked to see them. This is achieved by means of special devices called coronographs. The image shows the Coronal Multichannel Polarimeter (CoMP) attached to the coronograph of the Lomnický Štít Observatory (Slovakia).

CCT		NOVEMBER								
	MON	TUE	WED	THU	FRI	SAT	SUN			
Nov 12 Peak of Northern Taurids	01	02	03	04	05	06	07			
meteor shower	08	09	10	11	12	13	14			
Nov 26 Solar Orbiter Nominal Mission Phase starts	15	16	17	18	19	20	21			
Nov 27	22	23	24	25	26	27	28			
Solar Orbiter Earth Gravity Assist Manoeuvre	29	30	01	02	03	04	05			
(EGAMI)	06	07	08	09	10	11	12			

POLARIMETRIC AND HELIOSEISMIC IMAGER

GROUND-BASED SOLAR TELESCOPES can reach extremely high spatial resolution and sensitivity. However, they are unable to observe the Sun poles properly, because of the unfavorable perspective from the Earth. This can be overcome by space missions that go out of the ecliptic. The image shows the Polarimetric and Helioseismic Imager on ESA and NASA Solar Orbiter spacecraft. It consists of two telescopes and an imaging spectropolarimeter that will measure magnetic fields in the solar polar regions with unprecedented accuracy.

CCT			DEC	DECEMBER				
	MON	TUE	WED	THU	FRI	SAT	SUN	
Dec 4 Total solar eclipse	29	30	01	02	03	04	05	
Dec 14	06	07	08	09	10	11	12	
Peak of Geminids meteor shower (07:00 GMT)	13	14	15	16	17	18	19	
Dec 21 Winter solstice	20	21	22	23	24	25	26	
(15:59 GMT)	27	28	29	30	31	01	02	
Dec 22 Peak of Ursids meteor shower (07:00 GMT)	03	04	05	06	07	08	09	

JANUARY

Einstein Tower coelostat Jürgen Rendtel / AIP

GREGOR primary mirror Oliver Wiloth / KIS

MARCH

GREGOR adaptive optics Lucia Kleint / KIS

APRIL

Zürich Imaging Polarimeter Michele Bianda / IRSOL

VTT spectrograph slit European Solar Telescope Project

Einstein Tower spectrograph Jürgen Rendtel / AIP

MSDP imaging spectrograph Arkadiusz Berlicki / University of Wrocław

GREGOR Infrared Spectrograph Carlos Martín Díaz / IAC

Triple-Etalon Solar Spectrometer Thomas Kentischer / KIS

Chromospheric Imaging Spectrometer Luis Bellot / IAA - CSIC

NOVEMBER

Coronal Multichannel Polarimeter Jan Rybak / AISAS

DECEMBER

Polarimetric and Helioseismic Imager Max-Planck Institut für Solarsystemforschung

COVER: BACK SIDE OF GREGOR'S PRIMARY MIRROR

The image shows the 1.5 metre primary mirror (M1) of the GREGOR solar telescope from the back. The petals house the fans used for M1 cooling. The circular structure at the center of M1 holds GREGOR's tertiary mirror (M3). The horizontal cylinder on the left side of the elevation axis contains M5, that directs the light to the optics laboratory through a vacuum tube. GREGOR is the largest solar telescope in operation in Europe. It is located at the Observatorio del Teide (Tenerife, Spain).

Credit: Oliver Wiloth / Leibniz-Institut für Sonnenphysik (KIS)

This activity has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 739500